Binary Search Trees:
Basic Operations

Daniel Kane

Department of Computer Science and Engineering
University of California, San Diego

Data Structures Fundamentals
Algorithms and Data Structures


https://goo.gl/tLiWFc
https://goo.gl/EEJDQX

Learning Objectives

Implement basic operations on Binary
Search Trees.

Understand some of the difficulties with
making updates.




Outline

@ Find



Find

Find

Input: Key k, Root R

Output: The node in the tree of R with key
k



ldea

Find(6)



ldea

Find(6)

9
O © @



ldea

Find(6)

9
O ©® @ O



ldea

Find(6)

(13
O ©® @ @



Algorithm

Find(k, R)

if RKey = k:
return R

else if RXKey > k:
return Find(k, R.Left)

else if RKey < k:
return Find(k, RRight)



Missing Key

@
(&) (13
O ©® @ &

Key not in tree. Did find point where it
should be.

Run Find(5).



Missing Key

If you stop before reaching a null pointer, you
find the place in the tree where k would fit.



Modification

Find (modified)

else if RXKey > k:
if R.Left # null:
return Find(k, R.Left)
return R



Outline

@ Next Element



Adjacent Elements

Given a node N in a Binary Search Tree,
would like to find adjacent elements.



Next

Next

Input: Node N

Output: The node in the tree with the next
largest key.



Case |
If you have right child.

N

Null




No right child.

Case |l

Null




Next

Next(N)

if N.Right # null:

return LeftDescendant(/N.Right)
else:

return RightAncestor(N)



Left Descendant

LeftDescendant(N)

if N.Left = null
return N
else:
return LeftDescendant(/N.Left)



Right Ancestor

RightAncestor(N)

if N.Key < N.Parent.Key
return N.Parent
else:
return RightAncestor(/N.Parent)



Outline

© Search



Range Search

Range Search

Input: Numbers x, y, root R

QOutput: A list of nodes with key between x
and y



ldea

RangeSearch(5, 12).

(4) (13
O ©® @ &



ldea

RangeSearch(5, 12).

OURE
ONOCHNCRE



ldea

RangeSearch(5, 12).

0
OA.€
(6

© (19 (3



Implementation

RangeSearch(x, y, R)

L+ 0
N < Find(x, R)
while NKey <y
if NXKey > x:
L < L.Append(N)
N < Next(N)

return L



Outline

O Insert



Insert

Insert

Input: Key k and root R
Output: Adds node with key k to the tree



Insert ldea
Insert(3)

&
O © @



Insert ldea
Insert(3)

&
»H © @ &



Implementation

Insert(k, R)

P < Find(k, R)
Add new node with key k as child
of P



Outline

@ Delete



Delete

Delete

Input: Node N

QOutput: Removes node N from the tree



Difficulty

Cannot simply remove.

Delete(13)
(3

(4]
O ©® @ &



ldea




ldea




ldea




ldea




Implementation

Delete(N)

if NMRight = null:
Remove N, promote N.Left
else:
X < Next(N)
\\ XLeft = null
Replace N by X, promote XRight



Problem

Which of the following trees is obtained
when the selected node is deleted?

©®

.

()

@ @

ORO

OO
A ® B ® C ®
&) (3) @)
(&) ORO (6)
ORO ®_@ ORO
(4) ®&® 66 6
OO



Problem

Which of the following trees is obtained
when the selected node is deleted?

©®

@

()

@ @

ORO

OO
A ® B ® | C ®
&) (3) @)
(&) ORO (6)
ORO ®_@ ORO
(4) ® &® 6 6 6
OO




Next Time

Runtime and balance.



	Find
	Next Element
	Search
	Insert
	Delete

