
Binary Search Trees:
Split and Merge

Daniel Kane
Department of Computer Science and Engineering

University of California, San Diego

Data Structures Fundamentals
Algorithms and Data Structures

https://goo.gl/tLiWFc
https://goo.gl/EEJDQX

Learning Objectives

Implement merging and splitting of AVL
trees.
Analyze the runtime of these operations.

New Operations

Another useful feature of binary search trees
is the ability to recombine them in interesting
ways.

We discuss two new operations:
Merge Combines two binary search trees
into a single one.
Split Breaks one binary search tree into
two.

New Operations

Another useful feature of binary search trees
is the ability to recombine them in interesting
ways. We discuss two new operations:

Merge Combines two binary search trees
into a single one.
Split Breaks one binary search tree into
two.

Outline

1 Merge

2 Split

Merge
In general, to merge two sorted lists takes
O(n) time. However, when they are
separated it is faster.

Merge

Input: Roots R1 and R2 of trees with all
keys in R1’s tree smaller than those
in R2’s

Output: The root of a new tree with all the
elements of both trees

Merge
In general, to merge two sorted lists takes
O(n) time. However, when they are
separated it is faster.
Merge

Input: Roots R1 and R2 of trees with all
keys in R1’s tree smaller than those
in R2’s

Output: The root of a new tree with all the
elements of both trees

Problem
Which tree can be merged with the given
one?

Problem
Which tree can be merged with the given
one?

Extra Root
Easy if you have an extra node to add as
root.

Implementation

MergeWithRoot(R1,R2,T)
T.Left← R1
T.Right← R2
R1.Parent← T
R2.Parent← T
return T
Time O(1).

Get Root
Get new root by removing largest element of
left subtree.

Merge

Merge(R1,R2)

T← Find(∞,R1)

Delete(T)
MergeWithRoot(R1,R2,T)
return T
Time O(h).

Merge

Balance
Unfortunately, this merge does not preserve
balance properties.

Idea
Go down side of tree until merge with
subtree of same height.

Implementation

AVLTreeMergeWithRoot(R1,R2,T)
if |R1.Height− R2.Height| ≤ 1:

MergeWithRoot(R1,R2,T)
T.Ht← max(R1.Height,R2.Height) + 1
return T

Implementation (continued)
AVLTreeMergeWithRoot(R1,R2,T)
else if R1.Height > R2.Height:

R′ ← AVLTreeMWR(R1.Right,R2,T)
R1.Right← R′
R′.Parent← R1
Rebalance(R1)

return root
else if R1.Height < R2.Height:

. . .

Analysis

Each step changes height difference by
1 or 2.
Eventually within 1.
Time O(|R1.Height−R2.Height|+ 1).

Outline

1 Merge

2 Split

Split
Break tree into two trees:

Formal Definition

Split

Input: Root R of a tree, key x
Output: Two trees, one with elements ≤ x,

one with elements > x.

Idea
Search for x, merge subtrees.

Implementation
Split(R, x)
if R = null:

return (null, null)
if x ≤ R.Key:

(R1,R2)← Split(R.Left, x)
R3 ← MergeWithRoot(R2,R.Right,R)
return (R1,R3)

if x > R.Key:
. . .

AVL Trees

Using AVLMergeWithRoot maintains
balance.
Time =

∑
O(|hi − hi+1| + 1) =

O(hmax) = O(log(n)).

Conclusion

Summary

Merge combines trees.
Split turns one tree into two.
Both can be implemented in O(log(n))
time for AVL trees.

	Merge
	Split

